ESTIMULADOR ELÉCTRICO PARA APLICACIONES EN ANESTESIOLOGÍA

Folgueras, José Rodríguez, Layla Díaz, Mabel Ruiz, Anaídy Gómez, Miguel Cartaya, Mary

Resumen: En este trabajo los autores presentan sus resultados en el diseño y la comprobación de un estimulador de nervios periféricos destinado a aplicaciones en Anestesiología, en la determinación de la profundidad del relajamiento muscular de un paciente bajo anestesia profunda. Se presentan los criterios de diseño y se describe la estructura del estimulador. Se presentan y discuten, además, los resultados de las pruebas de laboratorio. El estimulador puede emplearse, adicionalmente, para localizar con precisión los nervios periféricos cuando se efectúa una anestesia regional.

Palabras clave: Anestesiología/ Estimulador de nervios periféricos/ Estimulador eléctrico/ Relajamiento muscular.

AN ELECTRICAL STIMULATOR FOR APPLICATIONS IN ANESTHESIOLOGY

Abstract: In this paper the authors present their results in the design and testing of a peripheral nerve stimulator intended to be applied in anesthesiology for purposes of determining the extent of muscle relaxation in a patient under deep anesthesia. Design criteria are offered and the structure of the stimulator is described. The results of laboratory tests are also presented and discussed. Additionally, the stimulator may be used to precisely locate the peripheral nerves under regional anesthesia.

Keywords: Anesthesia/ Electric Stimulator/ Muscular Relaxation/ Peripheral Nerve Stimulator.

I. INTRODUCCIÓN

El empleo de estimuladores eléctricos para determinar la profundidad del relajamiento muscular del paciente bajo anestesia profunda, cuando se le ha suministrado una dosis de relajante muscular, es una práctica cotidiana en el campo de la Anestesiología. Los estimuladores de nervios periféricos auxilian a los anestesiólogos a monitorear la función neuromuscular y conocer su grado de bloqueo durante un proceso quirúrgico. También se emplean usualmente para determinar la necesidad de reversión del bloqueo durante el período de recuperación y decidir cuando administrar un agente de reversión. Observando la respuesta muscular a diferentes patrones de estimulación eléctrica nerviosa, el anestesiólogo puede determinar los efectos de las drogas relajantes musculares y ajustar su dosificación convenientemente [1].

Estos estimuladores generan formas de ondas conocidas, de empleo establecido y usual en este campo y se emplean para estimular el nervio mediano u otro conveniente para ver la respuesta muscular correspondiente al dedo pulgar en el primer caso o a otro músculo en el segundo. La respuesta puede valorarse por el anestesiólogo de forma visual y/o táctil, o midiendo la aceleración o la fuerza desarrolladas por el dedo pulgar durante su movimiento [2].

II. DESARROLLO

1. Materiales y método

Un estimulador eléctrico como el que se presenta debe, a juicio de los autores de este trabajo, cumplir con los siguientes requisitos de diseño:

- Garantía de la seguridad del paciente.
- Generación de los patrones de estímulos eléctricos necesarios con los parámetros indicados.

Manuscrito finalizado en La Habana, Cuba, el 9/6/09, recibido el 9/6/09, en su forma final (aceptado) el 9/11/17. Los autores desempeñan sus actividades en el Instituto Central de Investigación Digital (ICID), Calle 202 No 1702, Siboney, CP 11600, La Habana, Cuba, telf.: 537-217022, fax: 537-336387. E.I.D.: José Folgueras es Prof. Titular, Jefe del Dto. de Equipos Médicos I, E-mail: folgueras@me.icid.edu.cu. La Ing. Layla Rodríguez, la Ing. Mabel Díaz, la Ing. Anaídy Ruiz y el MSc. Miguel Gómez son Aspirantes a Investigador, E-mail: layla@me.icid.edu.cu, mabel@me.icid.edu.cu, anaidy@me.icid.edu.cu, miguel@dc.icid.edu.cu, respectivamente. La Lic Mary Cartaya tiene el correo electrónico: mary@me.icid.edu.cu.

UNIVERSIDAD, CIENCIA y TECNOLOGÍA. Volumen 4, Número 13. marzo 2000. pp. 9 - 12
- Generador de estímulos con salida a corriente constante.
- Manipulación simple y segura con una interfaz amistosa para el usuario.
- Dimensiones reducidas y bajo peso.
- Alimentación por baterías y bajo consumo de potencia.
- Empleo de electrodos desechables de bajo costo.

Considerando los aspectos anteriores, se decidió diseñar un estimulador portátil, autónomo y de fácil operación y aplicación por el especialista, con características eléctricas tales que se complementan debidamente los requisitos de diseño anteriores.

El estimulador genera los siguientes tipos de estímulos empleados usualmente en Anestesiología:
- Simples (Simple Twitch o ST): pulsos de 200 ms de duración y período de 1 s (f = 1 Hz).
- Tren de Cuatro (Train Of Four o TOF): cuatro pulsos de 200 ms de duración con frecuencia de 2 Hz, repitiendo el patrón cada 15 s.
- Tren de Cuatro a Demanda (TOF-D): se genera un patrón de TOF cada vez que el especialista lo decide.
- Doble Ráfaga (Double Burst o DB): patrón DB en relación 3:2, formado por tres pulsos de 200 ms de duración y período de 20 ms (f = 50 Hz) y un intervalo sin pulsos de 0,75 s seguido de dos pulsos con las mismas características que los tres primeros.
- Conteo Postestátnico: (Post Tetanic Count o PTC): cinco segundos de estimulación tetánica, con pulsos de 200 ms de duración y período de 20 ms y a continuación, 16 estímulos ST.

La ergonomía no se ha descuidado y la interfaz con el operador está constituida por un teclado de membrana con efecto táctil y varios indicadores luminosos (diodos emisores de luz) que hacen posible identificar los siguientes estados:
- Estimulador energizado.
- Batería descargada o con poca carga.
- Modo de operación (ST, TOF, TOF-D, DB, PTC).
- La existencia de pulsos de estimulación aplicados al paciente.

En la Figura 1 se muestra el diseño del teclado de membrana, donde se aprecian las distintas teclas y los LEDs que se emplean como indicadores. Las dimensiones externas del estimulador son: 67 x 39 x 105 mm (ancho, profundidad, longitud).

En la Figura 2 se ha representado un diagrama en bloques del estimulador, donde el control se realiza por un microcontrolador PIC16C57 con una frecuencia de reloj de 10 MHz. El microcontrolador está a cargo de generar las formas de ondas de los estímulos, atender al teclado, a los LEDs y habilitar o inhabilitar tanto la fuente de corriente como el generador de alta tensión. La alimentación se realiza a partir de una batería interna de 9 V tipo PP3, que garrantiza la autonomía durante varias decenas de horas, aunque está disponible también una fuente externa de alto aislamiento (4 kV) para alimentar el estimulador a partir de la red industrial de electricidad. La detección de batería descargada (batería baja con poca carga) funciona en forma independiente, advirtiendo de esa condición mediante el LED rojo rotulado BATTERY.

Figura 1. Cara frontal del teclado de membrana del estimulador donde se distinguen las teclas que permiten seleccionar los cinco modos de trabajo, los LEDs de indicación (representados por un círculo rojo), y el teclado de `STOP` y el ajuste de intensidad de los estímulos.

Figura 2. Diagrama de bloques del estimulador. La detección de batería baja es independiente del microcontrolador. Los electrodos son de tipo autoadhesivo, desechables. Puede emplearse una batería alcalina de 9 V o una fuente externa de alto aislamiento para alimentación desde el sector industrial.
Una característica fundamental consiste en disponer de estímulos a corriente constante, lo que permite al especialista conocer con certeza qué corriente es la que está aplicando y tener la seguridad de que ésta no depende de las características del contacto electrodos – piel del paciente. El empleo de fuentes de corriente para suministrar los estímulos es muy usual cuando se pretende obtener repetibilidad, dada la naturaleza del contacto electrodos – piel del paciente [3, 4]. En un trabajo anterior se ha descrito la fuente de corriente empleada que, con ligeros cambios en el transformador de alta tensión, permite suministrar hasta 80 mA sobre una carga de 4 kV [5].

Esta fuente emplea un esquema circitual como el que se muestra en forma simplificada en la Figura 3 y brinda las características adecuadas para esta aplicación. La corriente a través de los electrodos produce una caída de tensión a través del resistor Rm, que se compara continuamente con un valor de referencia fijado por el ajuste de intensidad. La realimentación actúa de tal forma que mantiene la corriente constante para variaciones en la carga y en la fuente de alta tensión.

![Figura 3. Esquema simplificado de la fuente de corriente constante.](image)

Como medidas de seguridad se han considerado las estipuladas en la norma IEC601-2:10; 1987 [6] y, adicionalmente, la imposibilidad de operar en el modo PTC si no han transcurrido 5 minutos desde que se aplicó el último TOF o TOF-D. En caso de no cumplirse esta condición y de seleccionarse el modo PTC, se produce la iluminación intermitente del indicador de PTC y no se ejecuta la orden. La detección de batería de poca carga advierte al especialista de tal condición y le ayuda a evitar el funcionamiento anómalo del estimulador, lo que podría conducir a una posible interpretación errónea de la respuesta del paciente a la estimulación.

El aislamiento es suficiente para que no exista peligro de choque eléctrico alguno, incluso con fuente de alimentación externa, mientras que la operación indebida, incluso en casos que pudieran catalogarse como abusos, no causa efectos secundarios.

Una característica técnica adicional es que existe una señal de sincronismo disponible internamente, destinada a facilitar a los especialistas en electrónica la sincronización del osciloscopio. El microcontrolador genera dicha señal antes de iniciar la generación de cualquier estímulo, lo que facilita la observación de éstos, que se caracterizan por sus frecuencias relativamente bajas.

2. Resultados y discusión

Durante las pruebas de laboratorio se han realizado mediciones de diverso tipo, cuyos resultados fundamentales se resumen a continuación.

- Los distintos patrones de estímulos se generan con los parámetros preajustados y se seleccionan en forma fácil, inequívoca y amistosa para el operador.
- La fuente de estímulos a corriente constante fue probada durante 1800 horas de operación continua, con su tensión de alimentación nominal, a temperatura ambiente, sin observar degradación alguna de sus parámetros. La fiabilidad de la fuente es la que determinará, en última instancia, la fiabilidad del conjunto, debido a que opera con altas tensiones y a que sus componentes pueden, por este hecho, estar sujetos a tasas de fallas mayores que el resto de los componentes del equipo.
- Las medidas de seguridad incorporadas como parte del diseño, permiten garantizar la seguridad del técnico y del personal médico o paramédico que opera el estimulador. El alto aislamiento entre el estimulador y el sector de alimentación eléctrica industrial, aun empleando la fuente de alimentación externa, contribuyen a esta característica.
- La intensidad de los estímulos puede ajustarse con facilidad, con una precisión de ±3% para el intervalo de valores comprendido entre 20 mA y 80 mA y una carga de 4 kV. Para valores menores de 20 mA la precisión es de 5%, lo que resulta adecuado para la aplicación que se presenta.
- La fuente de corriente constante permite aumentos de la resistencia de carga (resistencia electrodos-piel del paciente) hasta de 8 veces con respecto al valor típico reportado para la misma, con una no-linealidad inferior a 5%, que evidencia su buen comportamiento para esta aplicación.
Los resultados de las mediciones anteriormente mencionadas se consideran satisfactorios e indican que el instrumento puede ser empleado en aplicaciones relacionadas con el campo de la Anestesiología, en las cuales se necesita estimular al paciente, ya sea bajo anestesia, para comprobar la profundidad de la relajación muscular, o consciente para otras aplicaciones.

Con el fin de facilitar las tareas de reparación cuando sea necesario, se ha incluido en el microcontrolador un programa interno de servicio, accesible por el especialista en Electrónica, pero totalmente transparente para el usuario médico. El programa, cuyas funciones se acceden y controlan desde el propio teclado del equipo, permite generar a voluntad las señales internas de control, lo que resulta un apoyo para los técnicos.

El estimulador que se presenta se caracteriza porque sus pequeñas dimensiones, su interfaz amistosa con el usuario y su fácil operación le hacen especialmente útil y en su diseño se han considerado, no sólo los aspectos técnicos, sino también los de índole ergonómica.

III. CONCLUSIONES

1. Se ha presentado un estimulador de nervios periféricos destinado especialmente a la determinación de la profundidad del bloqueo neuromuscular en pacientes bajo anestesia.

2. El estimulador es capaz de suministrar estimulos a corriente constante, con un valor máximo de corriente de 80 mA sobre una carga de hasta 4 kΩ, lo que se considera adecuado.

3. Los patrones de estimulación empleados son los de uso común en el campo de la Anestesiología.

IV. BIBLIOGRAFIA

V. AGRADECIMIENTOS

Los autores desean dejar constancia de su agradecimiento a la Dra. Idoris Cordero, del Hospital Clínico Quirúrgico Hermanos Ameijeiras, por sus observaciones relacionadas con la Anestesiología y a Rafael Bentió por su colaboración en el diseño industrial.